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In this paper we use a spectral-collocation method for the computa-
tion of singular minimizers in two-dimensicnal elasticity. In particular
we are interested in computing cavitating solutions {those that open a
hole at the center) and determining whether or not they are globally
stable in the energy sense. We describe the spectral collocation method
which is used in conjunction with a Richardson extrapolation iteration
and discuss various aspects related to the convergence of the method.
We obtain a variety of results for certain ranges of parameters that show
how the size of the cavitation depends on these parameters.  © 1994
Academic Press, Inc.

1. INTRODUCTION

The phenomena of void formation on bodies in tension
have been observed among others by Gent and Lindley [8].
Ball [ 1] showed in the context of nonlinear elasticity, that
void formation or “cavitation” can decreased the (potential)
energy of a body in tension when the tension is sufficiently
large. 'In fact for a spherical body composed of isotropic
material, when the tension is sufficiently large, the purely
radial deformation that opens a hole at the center of the
ball, is a global minimizer among such deformations, It
remains as an open question if such radial solutions are
actually global minimizers over an appropriate space of
deformations without radial symmetry. James and Spector
[12] proved for a certain class os stored energy functions
that includes the ones in the works of Sivaloganathan [13]
and Stuart [14], that the radial minimizer is not a global
minimum among functions without radial symmetry. In fact
they showed that by opening a small “cylindrical” kole in
the material {outside the cavity), the energy of the resulting
deformation is smaller than the radial deformation.

The numericai aspects of cavitation and other singular
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minimizers in elasticity are very delicate. It has been
observed that, because of the so-called Lavrentiev
phenomena [97, the usual finite element methods can fail to
compute both the minimizer and the minimum energy.
A numerical method for overcoming the Lavrentiev
phenomenon has been proposed by Ball and Knowles [2]
and Negron-Marrero [10]. This method uses a decoupling
on the deformation gradient that works quite well for one-
dimensional problems, but that for higher dimensional
problems, after discretization, yields a large scale con-
strained optimization problem. To handle numerically this
problem effectively one would need to use, for instance,
multigrid methods and exploit the sparsity of the resulting
discrete equations.

Instead of taking this approach, we proceed in this work
by discretizing the energy functional using finite differences
in the one-dimensional case and a spectral method (finite
differences in the radial direction and a truncated Fourier
series for the angular variable) for the two-dimensional
problem. We then minimize the resulting discrete func-
tionals with an iterative scheme based on a second-order
Richardson extrapolation. We show for the example of Ball
and Knowles [2] that the discrete energy functional has
two local minimizers, one that is global and is an
approximation of the singular minimizer of the continuous
problem and the other is an approximation of the smooth
solution of the Euler-Lagrange equation found numericaly
by Ball and Knowles. Both of these solutions are computed
by the numerical scheme, depending on the initiai condition
even for relatively small meshes. Thus for the discrete
problem the Lavrentiev phenomena reduces to the case of a
functional with two local minima, one being global and the
other local. We estimated the domain of attraction of each
minima by using functions of the form x¥* as initial guess in
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the iterative scheme. We found that for this class of func-
tions the domain of attraction is essentially independent of
the mesh size (see Fig. 3.2.).

The elasticity problem treated in Sections 5 and 6 is a free
boundaty value problem, where the free boundary condi-
tion is given by the natural boundary conditions at the
center of the plate (cf. (5.8) and (6.7)). The corresponding
discretizations of these free boundary conditions can be
obtained by minimizing the discrete functional with respect
to the cavity size (for radial solutions) or with respect to the
cavity shape (in the full two-dimensionai case). The solu-
tions in our problem are singular in the sense that they are
discontinuous at the origin {(R(0, 0)#0, cf. (4.10}) when a
cavity (not necessarily circular) appears. Thus no special
treatment is required in its representation {in polar coor-
dinates} in the numerical calculation, besides the use of the
free boundary condition.

The structure of the paper will be as follows. In Section 2
we discuss a numerical method for finding local minima of
our discrete problems. The method we use is an iterative
scheme based on a second-order Richardson extrapolation
technique (see Garabedian [7]). In Section 3 we will revisit
the example in Ball and Knowles, obtain a discrete func-
tional, and describe in some more detail the two minima
phenomena mentioned above. In Section 4 we describe a
two-dimensional model for nonlinear elasticity and define a
class of stored energy functions which allows for cavitation
according to the resuits in Bail [1]. In Section 5 we discuss
a finite difference discretization of the energy functional of
Section 4 when the deformation is restricted to be radially
symmetric. We obtain a variety of results for certain ranges
of parameters that show how the size of the cavitation
depends on these parameters. In Section 6 we discuss the
discretization of the two-dimensional energy functional for
arbitrary deformations. We describe the spectral collocation
method which is used in conjunction with the Richardson
extrapolation iteration. We discuss various aspects related
10 the convergence of the method both in the “artificial
time” and with the mesh size,

Notation. W'7(a, b) denotes the Sobolev space of func-
tions in L'{g, b} which have generalized or weak derivatives
that also belong to L'(a, #}. For any function f{(x, .., x,) of
n variables we write

i}
Sl oy x,) 23_.;; {20 e X,

T

for the ith partial derivation, 1 <i<n.

2. AN ACCELERATED STEEPEST DESCENT METHOD

In this section we describe an accelerated steepest descent
method based on a second-order Richardson extrapolation
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formula. Although the description of the method can be
done for any functional, we choose for simplicity to do the
presentation for the Dirichlet functional. Thus we consider
the problem of minimizing the functional

Hu) =1 L (u? + ) dx dy, (2.1)

where u# belongs to some space of smooth functions and is
subjected to Dirichlet boundary conditions. The first varia-
tion of 7 at w acting on v can be written as

SHu)-v = —j (du) v dx dy. (2.2)
2

It is well known that at a minimurn of (2.1) we must have

du=0 in 2, (2.3)
subject to some boundary conditions. The steepest descent
method for minimizing (2.1) would then take the form

ke

Wl =uf 4+ 3 4, k=0,1,2, .,

u” given, (24)

where A > 0. Note that
SH1tY - (4 Auk) = u/:j (A VY dedy <0, {(2.5)
L

thus 1 A«* is indeed a descent direction.

Let L,, for a given mesh size s, denote a discretization
of 4 (by finite differences, say). Let u, denote a mesh func-
tion and in (2.4) write 4¢ = 1. Then (2.4} becomes

it —uk

L), k=01,

uf) given, (2.6)
Thus the iteration step “&™ can be viewed as a discretization
of an artificial time variable “r’ and (2.6) is the discretiza-
tion of the heat equation
w,=Adw in £, (2.7}
where the function w is a function of (x, y, 1}. The solution
u{x, y)in (2.3} is a steady state solution of (2.7), namely,
ulx, p)="tm wix, y, 1). (2.8}
I — o0
The Courant-Friedrichs-Lewy stability condition for {2.6)
requires that 47 = O(#%), which makes the convergence in
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{2.6) slow when % is small. To overcome this problem one
considers instead of (2.7), the hyperbolic equation

w, +ew, = Aw in £. 2.9}
One can show (see [7]) that when ¢ is small, then the
convergence in (2.8) is exponential in 1. Moreover, the
Courant-Friedrichs-Lewy stability condition for (2.9)
requires that 4¢= O(k), which makes the convergence in ¢
faster. We can now discretize (2.9) as
up ' —uk

At

L+l kg k=1
up Tt =2u; +u,

(dey?

=L,u%). k=12 .,

ufl, u,, given, (2.10)
which is referred to as the second-order Richardson method.
Although in our derivation of (2.10), L, represents a
discretization of A, we can use the iteration (2.10) for any
nonlinear elliptic operator.

In (2.10) A¢ is chosen to satisfy the Courant-Friedrichs~
Lewy stability condition and the coefficient ¢ is chosen to
achieve descent to a steady state. In practice, we have
implemented an acceleration procedure that automatically
optimizes the choice of ¢ as a function ofz (see Bauer,
Betancourt, and Garabedian {4, 5] and Betancourt [6]) by
essentially estimating the lowest cigenvalue of L.

The convergence in a neighborhood of an equilibrium is
given by e~ *" with the convergence rate 4, related to the
eigenvalue —? of the linearized operator by

A ted,= -}

i

i=0,1,... (2.11)

The optimal convergence is obtained if one chooses & = 2w,
where @ is the lowest eigenvalue, which gives 1 =wq. In
addition to the difficulty of not knowing the value of @, the
convergence rate 4; for />0 will have a large imaginary
part, resulting in oscillations and loss of descent. Moreover,
this analysis breaks down in the initial phase of the itera-
tion, when the approximation is far from equilibrium and
the operator is dominated by nonlinear terms. For a
globally convergent algorithm, a descent method is required
with ¢ » 1. For these reasons, we initialize the iterates with
£~ 100 and proceed to estimate the dominant eigenvalue
from the time dependence itself, with the large frequencies
converging quickly to zero in the initial phase of large ¢, and
the lowest frequencies present in the later stage with much
smaller values of ¢ (order 0.5-1.0). This results in a gain
in convergence rate of at least an order of magnitude
compared to fixing ¢ to the initial value necessary in the
nonlinear phase. The resulting scheme converges in O{n)
iterations. The next version of our code will incorporate a
preconditioning algorithm developed by Betancourt [6]
which results in a scheme requiring O(1) iterations.
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3. A ONE-DIMENSIONAL EXAMPLE
Consider the problem of minimizing

Hu)= (3.1)

1
= [ (@ = x)? @ (x))° d,
o
where u belongs to the set 4 of absolutely continuous
functions such that #(0})=0 and u(l}=1. Clearly with
#*(x) =x'" we have that

Iu*)=min Ku)=0. {3.2)
One can show ([3]) that
I{u*)<m{g Hu), (3.3)

for any r>3 which is referred to as the Lavrentiev
phenomena. Because of (3.3) it has been observed that
numerical schemes that typically work on Sobolev spaces
with a large r (e.g., finite elements), fail to compute both the
minimizer and the minimum., (See [27 for numerical results
on (3.1) using a piecewise linear finite element method.)
For any integer n = L, let

h=1/n, X, =ih, 0gign, (3.4)
and let ¥, denote an approximation of u{x,). We consider the
finite difference approximation of (3.1},

(], = %i0) = (@] =X fuy  —u)®
2 h ’

(3.5)

n—1

Iy(uy)=h Z

where u, = (ug, ..., tr,,) and o =0, u,, = 1, It follows now that
for any v, with vy =0 = v, we have that

d
ol (uy) -v, = % L{w, +&v,)

e=0

n-—1

=h z [Lu(u,)]5 05

i=1

ui+1_ui)6 (ui_uirl)é]
P

[((u?—x.-)2+ (W —x )

(3.6)

where

(L)) =3} — x) uf li(

3
h

% (“r*“:_l)s
h

T R R (—h_—)]

(3.7
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FIG. 3.1,
problem (3.t ).

Global {singular) and local (smooth) minima of the

for 1 €£i<n—1. Note that

u;=x!"?, 0<gign, (3.8)
is a global minimum of the discrete variational principle
(3.5) with “discrete energy” of zero. Moreover, the
accelerated steepest descent method of Section 2 (using
(3.7) in (2.10)) computes both (3.8) and an approximation
of a “smooth™ solution of the Euler Lagrange equation of
(3.1) which has a minimum value of approximately 0.0311
with #=40. This second solution is a local minimum
of (3.5). Both (3.8) and the computed “smooth” solution are
shown in Fig. 3.1. Which solution the method computes
depends on the initial point in (2.10). With » =40 and

uh = xir, 0<ign, 25<a, (3.9)
one obtains (3.8). If instead of (3.9) we use
u? = x1*, 0<ign, a<2h, (3.10)

ufx)

FIG. 3.2. Approximate basin of attraction for the solutions in Fig. 3.1,
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then we obtain the second minima. The threshold value 2.5
was found to be essentially independent of the mesh size,
The results are shown in Fig. 3.2, where (3.9) is represented
by the dotted curves and (3.10) by the dashed curves.

4. A TWO-DIMENSIONAL MODEL FOR
NONLINEAR ELASTICITY

We consider a body which in its reference configuration
occupies the region

Q={xeR?||x| <1}, (4.1)

where |-| denotes the Euclidean norm. Let p: 2 — R?

denote a deformation of the body and let its deformation
gradient be

(4.2)

The requirement that p(-) preserves orientation takes the
form
xefl

det F(x)>0, (4.3)

Let

M2*2={Fe R**2| det F>0}. (4.4)
Let W:M2** >R be the stored energy function of the
material of the body. The total stored energy on the body
due to the deformation p is given by

1(p)= L W(F(x)) dx. (4.5)

o 9%

If 2 is subject to a deformation “g” on the boundary, ie.,

xedR, (4.6)

then the equilibrium configuration satisfying (4.6) mini-
mizes (4.5) among all functions satisfying (4.3) and
belonging to some appropriate Sobolev space.

A physically reasonable model for W is as follows. Let
v,, v, be the eigenvalues of (F'F)"/* which are called the
principal stretches. We take

W(F)=®(p,, v,),

FeM?*? 4.7

where

®(v,, v} = Avi+ Brs + Cl(v,v;)" + D{v, v,)7%, (4.8)
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A B,C,D>0, o321, §>0 (4.9)
If A = B, then the material occupying £2 is called isotropic.

Let (r, @) be polar coordinates for Q and let (R(r, 0),
&(r,8)) be the polar coordinates of p(x). That is, if

x=(x,, x;), then

p{x)= R(r, 8)(cos O(r, #), sin O(r, 8)), (4.10)
where
r=./x}+x3, O=tan~"(x;/x)). (4.11)

The variables (r, 8) and (R, €} are just polar coordinates in
the reference and deformed configurations, respectively. As
a consequence, our equations of Sections 5 and 6 are in
material or Lagrangian coordinates. An elementary com-
putation now shows that the principal stretches v,, v, are
given by

1 1
2v?,=R? +;3 R+ (@3 +;3 @5) R?

1 1 2
+ [(Rf + LR —(@f o @3,) Rz)

1 2 172
+4(R,9,+—2R393) RZ] . (4.12)
r

5. CAVITATION AMONG RADIAL DEFORMATIONS

In this section we study the case in which the deformation
p(-)is radially symmetric, i.e.,

X

, xef2,
(B

p(x)=p(lx]) (5.1)

for some scalar function p. In this case and when A =B in
(4.8), then (4.12) reduces to

vi=p'(r),  va=plr)r, (5.2}
and (4.5), (4.7) reduce (modulo 2z) to
! r
10)=, ro (0. 22) (53)
[¢] r
From (4.3) we obtain the inequalities
p’(r),@:»o, O<r<l. {5.4)
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We assume that g in (4.6) is of the form of a uniform
displacement of the boundary, i.e., for some 1>,

p(x)=ie(x), X €082, (5.5)
where e,( -) is the unit vector in the radial direction. Thus for

(5.1) we obtain that (5.5) reduces to

p(1) =4 (5.6)

The Euler-Lagrange equation for (5.3} is
(r(p‘l(p'(r), @)) =¢‘2(p'(r),@), O<r<t,

(5.7)
subject to (5.6) and

(5.8)

p(0)>0, lim o, (p'(r), ﬂ‘i’) )

r

The second condition in (5.8} states that if a hole opens at
the center (p(0) > 0), then the component of the stress nor-
mal to the surface of the hole, is zero. Fora <2 and A =B
in (4.8), Ball [1] proved that for 2 sufficiently large, the
minimizer of (5.3) satisfies (5.8) with p(0)>0; i.¢.,, a hole
opens up at the center of the ball. This phenomena of void
formation is called cavitation.
Let r; be as x; in (3.4). We discretize (5.3} as

n—1
Lip)=h E rr’+1,f2¢t+1/25 (5.9)
i=0
where
Fiaitr;
ri+l,’2=_"'2_e
(5.10)
G+ Piv1— P Piga T O<i<n—1
h TS ’

and p,=A. It follows now that for any v, with 5,=0 we
have that

n—1
I, (ps)-vy=h Z [Li(ps)]ivi+ hB(p,) v, (5.11)
i=1
where
1 ) .
[Lips}]i=— P (riv12®'f V—r,_ 2P )
| i—172
+E(¢'2 + @', (5.12)
1
B{pn)= _r1/2¢?{2+5‘p}52, I<ign—1
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FIG. 51. Surface of the cavity radius as a function of C and D
corresponding to A = B=10,g=y=6=15and i=12

The second equation in (5.12) represents a free-boundary
condition which is obtained from minimizing the functional
(5.9) with respect to p, and its solution determines the
cavity size. If the affine solution is stable, the solution to the
free-boundary equation is p, =0,

The following results where obtained using the
accelerated steepest descent method of Section 2. We tested
thecode with A=B=10,a=y=90=15A=12,and C, D
arbitrary. In Fig. 5.1 we show the cavity radius of the equi-
librium configuration computed by the code as a function
of C and D. (Figure 5.2 shows several cross sections of this
surface for different values of D.) We see from these figures
that the cavity radius is very sensitive to changes in both C
and D. We find that the cavity radius is increasing with C
for D fixed. Since C is proportional to the energy due to
changes in area, as C increases, the cavity radius increases
to make the total area small. On the other hand, since the
term proportional to D is inversely proportional to changes

1.0 — T T T
[ D=01C |
08— =
r D - 038 ]
r I = 0.88

3 06 B

v; D =084 |

4 J

= D =122

[ -

3 o4 D =150
02 -
0,0L 1 1 T

0.0 0.5 10 1.5 2.0

<

FI1G. 52. Cross sections of the surface in Fig. 5.1
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FIG. 53. Cavity radius as a function of the boundary displacement
4—1 corresponding to A= F=C=10anda=15.
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H L
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FIG. 54. The artificial time evolution of the cavity radius for
A=B=C=D=10, 2=1.2, and different values of o.

Boundary Error (Log Scale)

s -

L 1 N L

0

2000 4000 . 5000 8000
Artificial Tirmne

FIG. 5.5. The artificial time evolution of the boundary error
cotrespondingto 4 =B=C=D=10, 1=1.12, and different values of &
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in the area, for C fixed and increasing D, the cavity radius
should decrease (thus increasing the total area ) as shown in
the figures.

Note that the affine solution p{s) = Asis always a solution
of (5.6)-(5.8). If x< 2 and A is sufficiently large, then the
cavitated solution 1s stable and the scheme converges to this
solution. If o > 2, then the affine solution is stable for all 4
and the scheme converges to this solution. Just for the case
o= 1.5, we show in Fig. 5.3 the cavity size of the equilibrium
configuration computed by the code as a function of the
boundary displacement A-1. Note that since the affine
solution {cavity size zero} is always a solution (of both the
continuous and discrete problems!), in Fig. 5.3 there is
actually a bifurcation from the affine solution for 11 in
(0.08, 0.09} approximately. The fact that the code converges
to the cavitated solution and not the affine for 4 — 1 greater
than 0.09 shows that the cavitated solution is stable in the
energy sense for A sufficiently large and, correspondingly, it
shows that the affine solution is unstable, although it
satisfies the Euler-Lagrange equations. These results are in
agreement with those of Ball [1]. In Fig. 5.4 we show for
@ = 1.5 and @ = 2.5 how the cavity size varies with the artifi-
cial time “4” in (2.10). In this figure A =B=C=D=1.0,
y=8=135 and A=12. On both cases the code starts
iterating with an initial cavity size of (.1 and does not
“improve” on this until the first 400 iterations. For the same
problems, Fig. 5.5 shows (in log scale) the inner boundary
error {the second eguation in (5.12)) as a function of the
artificial time. From this we obtain that the rate of
convergence of the inner boundary error is approximately
exponential.

To estimate the basin of attraction of the cavitated solu-
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FIG. 56. The artifictal time evolution of the cavity radius for
A=B=C=D=10,A=12, 0=125 and different initia) cavity sizes.

tion when o = 1.5, we show in Fig. 5.6 the time evolution of
the cavity radius for different initial cavity sizes. Thus when
the cavitated solution exists, it is stable and has a very large
basin of attraction. Note that even starting with very small
cavities close to the affine solution, the code still converges
to the cavitated solution. On the other hand if x=2.5, so
that the affine solution is stable according to the results in
Ball (117, Fig. (5.7) shows that, essentially, starting with any
cavity size, the code “closes up” the cavity and converges to
the affine solution. Thus the situation here is very different
from that of Section 3. The functional here has two critical
points but only one is stable, depending on the sizes of o
and A.

Cavity Radius

]
1

VJ.IA.IIll_I_I_-IllllJlllLl_IlLIlJLllL

1400

1800

Artificial Time

FIG. 5.7. The artificial time evolution of the cavity radius for A=B=C=D=1.0, 1 =12, =25, and different initial cavity sizes.
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6. CAVITATION OF ARBITRARY DEFORMATIONS

Consider the problem of minimizing (4.5} subject to (4.7},
(4.8), (4.9), (4.12), and (5.5). In this section we discuss how
the method of Section 2 is used to solve numerically this
problem.

Let (#, #) be polar coordinates for 2, let (R(r, 8), @(r, 8))
be the polar coordinates of p{x), and recail Egs. (4.12).
Define

I ;1
AL2=R3+?R51(6)3+;~505) R, (6.1a)
i
A3=2(R,6’,+r—2-R9@9) R, (6.1b)
Ag=[A3+ 4313 {6.lc)
A, A
L,=—~ L,=-=, )
2= =7, {6.1d)
Thus from (4.12) we find that
Uizz‘_%[A[ +A4,] {6.2)
Let
Wy =07, wy=103, {6.3a),(6.3b)
lw,, wy) = D(wi, wi?). (6.4)

The Euler-Lagrange equations for {4.5), (4.7} are thus given
by

o4
mEy Mo\ +é,+(¢,—0d:) L) R}

2
_Ré? {_"(¢_1 —¢.3) L3@r}

é {1
et - b L R

.Ra 1 L6 6.5
- 55{‘;(@.1‘?5,2) 3 e} {6.5a)

1
s +¢,r(¢‘1—¢_2)LZ)R(93+;§@3,)=0,

%,
“5{"(45,5 +¢2—(4,—¢2) Ly} Qr‘R2

+r{¢g,~¢.) LiRR,}

8 {1
T Bt b (610 L) LR

(6= ) LaRR, | =0, (63b)

where the arguments of ¢ |, ¢ 5 are (wy, w,).
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The boundary condition (5.5) takes the form

R(1,8)=4,  O(1,0)=0, §<[0.2n). (66)

The natural boundary conditions for {6.5) are given by

rgng+ ri{(¢ +d.,+(d,—d)L) R,

+{¢.,—¢,) LsRO,} =0, (6.7a)
rl_i'n{')t "{((ﬁ‘l +g¢a— (@ —¢2} L) Rz@r
+(¢—¢2) LiRR,} =0 (6.7b)

These equations represent the free-boundary condition that
determines the shape of the cavity. We also have that the
periodicity conditions

R EG-8,8, 8, R, R, areperiodicing, (6.8)
For any integers n, m= 1, let
hs;;, r,=ih, 0<ign,
{6.9)
2n . .
k=;1—, 8= jk, 0<j<m

For any function u of {r, 8), we let 1, denote an approxima-
tion of u(r;, 8;). We now approximate u.(r;, . 6;) by

UFig 0 0)) % 5u1=‘-‘+‘;1—‘”i (6.10)

0<i<n 0<j<m For the derivatives in the “§” direction
we use a truncated Fourler series. Maore specifically, let
{u;3, 0<i<n, 0<j<m, be a mesh function defined over
(6.9) and let

uy= 3 an(r)e*,

Eis N

(6.11)

0<i<n, 0 j<m, be its discrete Fourier representation.,
We now compute

(6.12)

Ug 3= }: io:arz(ri)emﬂja
jof < N

0<i<n, 0< j<m. Numerically, to compute (6.12), we first
compate the {a,} in {6.11)} using an FFT routine; then we
compute the {ixa,}, and finally we use an inverse FFT
routine to obtain the mesh representation of #,. Expansions
like g ;1,5 ; now have the meaning

(6.13)

=1
Ugivin,;=3(Ue a1, 5t Us iy
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O<i<n, O0<j<m, where uy,,,, and u,; come from
(6.12). With the formulas (6.10), (6.12}, and (6.13) we
discretize {6.1) as

1 (Rpi,+ RS,
AI.2,|'+1,r2'j=(5Rg)2 += { +1,j 9'1}

Fivip 2
1 (€}, +09%.
i((égy)2+ 5 { G041, 7 ﬂ.)})
LY 2
x R?+1/2‘j-’ (6.14)
O0<i<n 0K j<m,ete, and
Wigir 12y = 10 o, T Aa e yag (6.15)
0<i<n 0<j<m Now we discretize (4.5), (4.7) by
n—-1 m-—1 ) )
Li(Ry, ©,)=hk z Z "f+1,'2‘15!+1'f2”', (6.16a)
i=0 j=0
where
A @(Wl,i+l,’2._f: Wz,i+|,12,j).- {6.16b)

0gi<n 0gj<m, and R,={R;}, ©,={6;}. The com-
bination of (6.1¢), {6.12), (6.13) with the method of
Section 2, applied to (6.16), is called a spectral-collocation
method (see [6]).

We tested the code with 4 =B=C=D=10, a=y=
=15, A=12, and n=20, m=32. The various nitial
configurations used in (2.10), where (here 1, f, and the d’s
are nonnegative numbers and the #’s are positive integers)
for the {R,} we use either

Ry=ug(l +d, cos n 6+ d, sin n,6))
X (L~ rfy+ arf,
O<i<n,

0<j<m (6.17a)

ar

R,—J,-=u0 + {‘1 ‘3{0)(1 +d3 CoSs ’1’38j+d4 Sin n49j) ."53
+ (ds cos ngB; +dgsinngd) ri(l—r),

0<ign, 0€j<m. (6.17b)
For the {®;} we use either
O,=0,+cyr{l—r;), O0<gign, 0gj<m, (6.18a)
or
0,="0,+c,sin 2nr,, O0gigsn 0<j<m, (6.18b)
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FIG. 6.1. Initial configuration corresponding to Case 1.

where the ¢’s are nonnegative numbers. For {6.17a) the
inner cavity at r = 0 need not be circular but the outer edge
at r =1 is always circular with radius . For {6.17b), on the
contrary, the inner radius is always circular with radius u,
while the outer edge need not be circular. We considered the
following particular cases of these initial conditions, In all
cases up=0.1and §=1.0.

Case 1. Initial conditions (6.17a) and (6.18a) with
d,=d, =06, n,=n,=3, and ¢, =0.0. The graph is shown
in Fig. 6.1.
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FIG. 6.2. Initial configuration corresponding to Case 2.
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FIG. 6.3. Initial configuration corresponding to Case 3.
Case 2. lnitial conditions (6.17b) and {6.18a) with

dy=d,; =00, ds=d;=06, ns=ng=3, and ¢, =0.0. The
graph is shown in Fig. 6.2,

Case 3. Initial conditions {6.17b) and (6.18a) with
dy=d,=d;=d;=00 and ¢, =4.0. The graph is shown in
Fig. 6.3.

Case 4. Initial conditions (6.17b) and (6.18a) with
dy=d,=00, d;=d,=0.1, ns=ng=3, and ¢,=4.0, The
graph is shown in Fig. 64.

Case 5. Initial conditions (6.17b) and (6.18b) with
di=d,=00,ds=d,=0.1, ny= xng=3, and ¢, =1.0. The
graph is shown in Fig. 6.5.
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FIG. 6.4. Initial configuration corresponding to Case 4.
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FIG. 6.5. Initial configuration corresponding to Case 5.

We also show in Fig 6.6 an initial configuration not
described by (6.17), (6.18), with an eliipsoidal cavity. Each
of these initigl configurations satisfy (5.5) or, equivalently,
(6.6). {In the figures of configurations, the radial lines
correspond to “#” constant and the circumferential hines
correspond to “#” constant). In all of these cases the code
converges to the radially symmetric solution of Section 5
corresponding to the same data. The inner cavity radius is
approximately 0.147, The graph of the final configuration is
shown in Fig. 6.7. In Fig. 6.8 we show the determinant of the
deformation gradient (4.2} as a function of {r, &). This figure
shows that in the final configuration the deformation across
the body is nearly constant except close to the inner cavity
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-1.5 -1.0 ~0.5 0.0 0.5 1.0 1.5
x
FIG. 6.6. Initial configuration with ellipsoidal cavity.
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FIG. 6.7. Final conliguration {axisymmetric) computed by the code
corresponding to the initial configurations in Figs. 6.1.-6.6.
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FIG. 6.8. Determinant of the deformation gradient for the final

deformation in Fig, 6.7.
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FIG. 69. The artificial time evolution for the energy corresponding Lo
Case 1.
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Case 1.
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FIG. 6.13. [Initiai configuration corresponding to Case 6.

where the material is highly compressed {compared to rest
of the body).

Just for Case | (the other cases are similar), we show in
Figs. 6.9-6.12, as a function of the artificial time “k” in
(2.10), the graphs of the energy, the maximum norm, and
discrete L, norm of the Fourier coefficients of the first varia-
tion of (6.16a), and the descent coefficient (the “¢” in (2.10))
estimated by the code. (See [4, 5, 6] for a discussion of
how ¢ is estimated.}) From Figs. 6.10, 6.11 we obtain an
approximate exponential convergence on the error as
measured by the size of the first variation. (The convergence
is actually exponential when (2.10) is applied to {2.3) or, in
general, for any linear elliptic operator.)
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FIG. 6.14. Final configuration corresponding to Case 6.
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FIG. 6.15. Determinant of the deformation gradient for the {inal
configuration in Fig. (6.14).

We also considered the following case in which the outer
boundary of the initial configuration is noncircular:

Case 61 Initial conditions (6.17b) and (6.18a) with
dy=d, =03, ds=d;=00, ny=n,=3, u,=01, 1=13,
and ¢, =0.0. The graph is shown in Fig. 6.13.

The final configuration is shown in Fig. 6.14. Note the
changes on the radial and circumferential lines as well as the
inner cavity which is noncircular. The discrete energies of
the inittal and final configurations are 22.48 and 20.49,
respectively, In Fig. (6.15) we show the determinant of the
deformation gradient (4.2) for this problem. Note again that
the inner cavity is in a state of high compression. The
regions of high defermation (large determinant) correspond
to the sectors labelled 1, I1, and 111 in Fig. 6.13.

7. CONCLUSIONS AND COMMENTS

When the physical parameters in (4.8) are such that the
cavitated solution is stable, then the axisymmetric cavitated
solution appears to be the global minimum and has a very
large basin of attraction. We tried a host of initial configura-
tions shown in Figs. 6.1-6.6 and with cavities of other
shapes, and always the code converges to the axisymmetric
cavitated solution. Also Fig. 5.6 gives an estimate of the
domain of attraction of the axisymmetric cavitated minima
as a function of the initial cavity size. If the parameters in
(4.8) are such that the affine solution {no cavitation) is
stable, then the code finds this solution as the global mini-
mum even for initial conditions with a cavity (see Fig. 5.7).

The initial conditions in Figs. 6.1-6.6 all correspond to a
uniform displacement of the boundary (the displacements in
the intertor are nonuniform). The fact that the code con-
verges in all cases to the axisymmetric solution of Section 5,
is a strong indication of the global stability of this solution.
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TABLE I
n e(p,) e(p,)fe(pa,)
4 0.329365E + 00 —
8 0.236298E + 00 0.717432E + 00
16 0.146077E + 00 . 0.618189E + 00
0.730892E — (1 0.500349E + 00
64 0.259182E — 01 0.344611E + 00

(This does not contradict the results of James and Spector
[127 as their results are three dimensional). Moreover, the
code is able to compute a fully two-dimensional sotution
(Fig. 6.14) when the boundary displacement is nonuniform.

For the one-dimensional problem of Section5 with
0o =0, our method has a rate of convergence of O(A?) if the
function p is smooth and, in general, is O(4) if the solution
has an unbounded derivative. (See [11].) For the case
po>0 and the data A=B=C=D=10, y=56=1.5,
and A=1.2, we computed solutions corresponding to
n=4 8 .,64 and used the solution corresponding to
n =128 as the exact discretized solution for the purpose of
estimating the errors. We use the notation

elp.)=1le.— P28l o>

where p, stands for the solution p,, corresponding to
h = 1/n. (Here we understand that in p, — p,5 only the com-
ponents of p .5z corresponding to those of p,, are used in the
computation.) The results are shown in Table I which
shows an approximate rate of convergence of O(4*?) in this
case. The full analysis of the method of Section 6 shall be
pursued elsewhere.

The combination of the Richardson extrapolation techni-
que and the spectral-collocation method has proven to be a
powerful and robust method in this problem as well as in
applications to piasma physics for instance (see [6]). One
can obtain further speedup in the performance of the
method if some kind of pre-conditioning is used in (2.10}.
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We are currently working on a follow up paper in which we
discuss a pre-conditioning that has been used in the three-
dimensional MHD problem of plasma physics, which
results in a scheme requiring O(1) iterations, and that has
the advantage of preserving descent and requires a minimal
overhead (less than 1% ) for the pre-conditioned steps. The
use of multigrids, although attractive, might lead to a
scheme which does not have the descent property.
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